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Introduction. It has been previously shown that immunoregulatory DX5+NKT cells are able to prevent colitis induced by
CD4+CD62Lhigh T lymphocytes in a SCID mouse model. The aim of this study was to further investigate the underlying
mechanism in vitro. Methods. CD4+CD62Lhigh and DX5+NKT cells from the spleen of Balb/c mice were isolated first by MACS,
followed by FACS sorting and cocultured for up to 96 h. After polyclonal stimulation with anti-CD3, anti-CD28, and IL-2,
proliferation of CD4+CD62Lhigh cells was assessed using a CFSE assay and activity of proapoptotic caspase-3 was
determined by intracellular staining and flow cytometry. Extrinsic apoptotic pathway was blocked using an unconjugated
antibody against FasL, and activation of caspase-3 was measured. Results. As previously shown in vivo, DX5+NKT cells
inhibit proliferation of CD4+CD62Lhigh cells in vitro after 96 h coculture compared to a CD4+CD62Lhigh monoculture
(proliferation index: 1.39± 0.07 vs. 1.76± 0.12; P = 0 0079). The antiproliferative effect of DX5+NKT cells was likely due to
an induction of apoptosis in CD4+CD62Lhigh cells as evidenced by increased activation of the proapoptotic caspase-3 after
48 h (38± 3% vs. 28± 3%; P = 0 0451). Furthermore, DX5+NKT cells after polyclonal stimulation showed an upregulation of
FasL on their cell surface (15± 2% vs. 2± 1%; P = 0 0286). Finally, FasL was blocked on DX5+NKT cells, and therefore, the
extrinsic apoptotic pathway abrogated the activation of caspase-3 in CD4+CD62Lhigh cells. Conclusion. Collectively, these data
confirmed that DX5+NKT cells inhibit proliferation of colitis-inducing CD4+CD62Lhigh cells by induction of apoptosis.
Furthermore, DX5+NKT cells likely mediate their cytotoxic and proapoptotic potentials via FasL, confirming recent reports
about iNKT cells. Further studies will be necessary to evaluate the therapeutical potential of these immunoregulatory cells in
patients with colitis.

1. Introduction

It is well established that T cells, in particular naïve CD4+ T
helper (Th) cells, play a key role in mediating immune
responses and especially many aspects of autoimmune dis-
eases [1–3]. In line with this hypothesis, liver damage in
autoimmune hepatitis, for instance, is likely orchestrated
by naïve CD4+ T cells recognizing an autoantigenic liver
peptide [4]. In mice, it has been shown that transfer of
enriched CD4+CD62Lhigh T cells into severe-combined-
immunodeficient (SCID) mice induced chronic colitis [5–8].
For autoimmunity to occur, the antigen must be presented

by antigen-presenting cells to naïve CD4+ T helper (Th0)
cells. Once activated, Th0 cells can differentiate into Th1,
Th2, or Th17 cells, initiating a cascade of immune reactions
that are determined by the cytokines they produce [9].

In order to prevent effector cells to initiate and perpetuate
tissue damage, subsequently resulting in autoimmune
disease, there are several immune cell populations involved
that tightly regulate their activation, such as regulatory T cells
(Treg) [10] and NKT cells [11]. For instance, NKT cells pre-
vent the development of experimental crescentic glomerulo-
nephritis by inhibiting proliferation of mesangial cells [12]
and they are able to inhibit the onset of type one diabetes
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by impairing the development of pathogenic T cells specifi-
cally targeting pancreatic beta cells [13]. There are also
different cellular mechanisms involved, like the induction of
programmed cell death to regulate respective immune
responses in order to prevent self-endangering activities [14].

The acquisition of a distinct cytokine profile by naïve
CD4+ T (Th0) cells and their proliferative capacity is modu-
lated by specific cytokines. Th1 CD4+ T cell differentiation is
mediated by IL-12 and IFN-γ that lead to the expression
of the Th1 lineage specification transcription factor T-bet
[15, 16]. Th2 cell differentiation depends on the activities
of IL-4 and the transcription factor GATA3 [16]. Differen-
tiation into each lineage is also opposed by cytokines; thus,
IFN-γ promotes Th1 while suppressing Th2, IL-4 pro-
motes Th2 and suppresses Th1, while TGF-β suppresses
Th1 and Th2 cell differentiation [16].

Natural killer T (NKT) cells represent a subset of T lym-
phocytes that express NK cell markers such as NK1.1 and
CD94, as well as T cell receptors (TCR) α/β with a restricted
repertoire [17, 18]. These cells use a precisely rearranged
homologous TCR variable (V) α and junctional (J) α
segments. In mice, the invariant T cell receptor α chain
Vα14, encoded by Jα18 with a conserved CDR3 region, is
preferentially associated with Vβ8.2, Vβ7, or Vβ2 gene seg-
ments [17, 19]. In contrast to other T lymphocytes, the
TCR of NKT cells only recognizes glycolipids presented by
CD1d, which is a MHC class I-like glycoprotein that belongs
to a group of CD1 molecules associated with β2-microglobu-
lin [20–22]. Activation of NKT cells via CD1d antigen
presentation initiates the production of both Th1 (IFN-γ)
and Th2 cytokines (IL-4, IL-5, IL-13) [23] and increases their
cytolytic activity [24].

Depending on CD1d reactivity and whether they either
express or do not express the invariant Vα14-Jα18 TCRα/β,
three subsets of NKT cells have been described. First, there
are CD1d-dependent invariant NKT cells (iNKT) also called
type I NKT cells. Second, a population of CD1d-reactive
NKT cells expressing diverse TCR referred to as type II
NKT cells has also been characterized. The third group
consists NKT-like cells, which are CD1d-independent and
express diverse TCR [18].

Several surrogate markers, such as NK1.1 in C57Bl/6
mice, coexpressed with the TCRα/β, have been used for iden-
tification of NKT cells [18]. Another frequently used marker
for these cells in NK1.1− mice strains is the antibody DX5,
which recognizes the α2-integrin CD49b [25]. DX5 was
initially characterized as a marker for NK cells [26], andmore
recently, DX5-coexpressing CD3+ lymphocytes have been
described [27].

Previous studies, including from our group, revealed
evidence for an immunoregulatory potency of DX5+NKT
cells by the production of Th1 and Th2 cytokines [7, 28–31].

Although, all these data describe typical characteristics of
NKT cells, there remains an ongoing discussion as to whether
DX5+NKT cells belong to the class of CD1d-dependent NKT
cells [32, 33]. However, less attention has been given to their
cytotoxic potential so far.

In the present study, we further characterized an antipro-
liferative effect of DX5+NKT cells on colitis-associated

CD4+CD62Lhigh cells. For this purpose, CD4+CD62Lhigh of
the spleen of Balb/c mice was isolated and coculture experi-
ments were set up with either DX5+NKT or CD8+ T cells.
DX5+NKT cells had an antiproliferative effect and induced
apoptosis in CD4+CD62Lhigh cells. Furthermore, we could
identify Fas ligand (FasL) to be a key player in the cytotoxic
and proapoptotic function of DX5+NKT cell potentials.

Consequently, we were able to show that the proapopto-
tic effect of DX5-NKT cells against CD4+CD62Lhigh T cells is
directed by FasL. Our observation therefore confirms
previous reports about the cytotoxicity of type I NKT cells
and extends these to DX5-NKT cells [34, 35].

2. Methods

2.1. Cell Harvesting and Isolation. Different lymphocyte sub-
sets were purified from splenic mononuclear cells isolated
from Balb/c mice (Charles River Laboratories, Wilmington,
MA, USA). If necessary, further isolation was performed by
magnetic activated cell sorting (MACS; Miltenyi Biotec,
Bergisch Gladbach, Germany) or by FACS (FACSAria I,
BD Biosciences, San Jose, USA).

Briefly, cell suspension of the spleen was prepared by
cutting small pieces and gently pressing through a
100μm wire mesh. DX5+ cells were purified using anti-
mouse-DX5+ MicroBeads (Miltenyi Biotec). Cells were
passed through a MACS column (type LS) attached to a
MidiMACS magnet (Miltenyi Biotec). DX5+ cells were col-
lected in the positive fraction. DX5+ splenocytes were
labeled with FITC-conjugated anti-mouse CD3 molecular
complex (clone: 17A2, rat IgG2b) and PE-conjugated
anti-mouse CD49b (clone: DX5, rat IgM) (all from BD
Biosciences) for further DX5+NKT cell isolation by FACS
sorting. CD4+CD62Lhigh and CD4+CD62Llow cells were puri-
fied using the CD4+CD62L+ Isolation Kit (Miltenyi Biotec)
and CD8+ cells by using anti-mouse-CD8+ MicroBeads
(Miltenyi Biotec).

2.2. Antibodies and Flow Cytometry. The following reagents
were used for cell labeling in multiparameter flow cytometric
analysis (FACS Calibur, BD Biosciences): PE or FITC-
conjugated anti-mouse CD4 (clone: RM4-5, Rat IgG2b)
Alexa 648 or FITC-conjugated anti-mouse CD3 (clone:
17A2, rat IgG2b), Alexa 648 or FITC-conjugated anti-
mouse-CD8a (clone: 53–6.7, rat IgG2a), PE-conjugated
anti-mouse-CD49b (clone: DX5, rat IgM), FITC- or PE-
conjugated anti-mouse-CD62L (clone: MEL-14, rat IgG2a),
and FITC- or PE-conjugated anti-mouse-CD178 (Fas
ligand) (clone: MFL3, hamster IgG1); all are from BD Bio-
sciences. APC-conjugated anti-mouse-CD49b (clone: DX5,
rat IgM) and FITC-conjugated anti-mouse-CD49b (clone:
DX5, rat IgM) all are from Miltenyi Biotec. APC-
conjugated anti-mouse-CD4 (clone: RM4-5, rat IgG2b) is
from Caltag (Towcester, UK).

2.3. Coculture Experiments. Ninety-six well culture plates
(Sigma-Aldrich, St. Louis, USA) were coated with anti-
mouse-CD3e (clone: 145-2C11, BD Biosciences) at 10μg/
ml and stored overnight at 4°C. As described in previous

2 Journal of Immunology Research



studies in more detail, after isolation, 2× 105 CD4+CD62Lhigh
and CD4+CD62Llow cells were coincubated with either
2× 105 DX5+NKT cells or CD8+ T cells in 200μl RPMI cul-
ture medium (Gibco, Paisley, UK) in either coated or
uncoated wells [7]. For further stimulation, 5μg/ml anti-
mouse-CD28 (clone: 37.51, BD Biosciences) and 2000 IU/
ml IL-2 (PeproTech, Rocky Hill, USA) were added [31]. Con-
trol cultures of CD4+CD62Lhigh, CD4+CD62Llow, DX5

+NKT
cells, and CD8+T cells only were incubated at 4× 105 cells in
200μl RPMI under the same conditions.

2.4. CFSE Proliferation Assay. After isolation, CD4+-

CD62Lhigh and low cells were labeled using the Vybrant
CFDA SE Cell Tracer Kit (Molecular Probes, Eugene,
USA). In brief, cells were incubated with 0.5μM CFSE solu-
tion for 15min at 37°C. Pellet was washed once with culture
medium to stop the staining reaction and then incubated for
60min at room temperature to release excessive CFSE.

2.5. Intracellular Cytokine Staining. After cell isolation,
cocultures were set up as mentioned above. Additionally,
50 ng/ml PMA (InvivoGen, San Diego, USA) was added from
the beginning, 750 ng/ml ionomycin (Sigma-Aldrich, St.
Louis, USA) for the last 4 h, and 1μg/ml GolgiPlug (BD
Biosciences) was added 2h before cell harvesting. Culture
supernatants were harvested and stored at −20°C for IFN-γ
ELISA. Cells were fixed in 1ml Fix/Perm (eBioscience,
Hatfield, UK) for 60min at 4°C. After incubation with
permeabilization buffer (eBioscience), cells were stained
intracellular with PE-conjugated anti-mouse-Abs (IL-2,
clone: JES6-5H4/IFN-γ, clone: XMG1.2/TNF-α, clone:
MP6-XT22) from BD Biosciences and with PE-conjugated
anti-mouse-IL-13 (clone: eBio13A) and FITC-conjugated
anti-mouse-IFN-γ (clone: XMG1.2) all eBioscience.

2.6. Intracellular Caspase-3 Staining. After cell isolation,
cocultures were set up as mentioned above. For 48 h coincu-
bation, CD4+CD62Lhigh and CD4+CD62Llow cells were
additionally labeled with CFSE. After the indicated time, cells
were fixed in 1ml Fix/Perm (eBioscience) for 60min at 4°C.
After incubation with permeabilization buffer (eBioscience),
cells were stained intracellular with Alexa648-conjugated
anti-mouse-caspase-3 (clone: C92–605, BD Biosciences).
For FasL blocking (Kayagaki, Yamaguchi et al. 1997),
DX5+NKT cells were preincubated with either 50μg/ml
purified mouse-anti-FasL (clone: MFL4; BioLegend, Cam-
bridge, UK) or 50μg/ml isotype control for 1 h and then
cocultures were set up with CD4+CD62Lhigh cells as indicated
above.

2.7. Statistics. All in vitro experiments were repeated at least
3 times, and data are presented as the mean value± SEM.
Statistical analyses were performed using either a Student’s
t-test or the Mann–Whitney U test. Differences were con-
sidered significant at P < 0 05.

3. Results

3.1. DX5+NKT Cells Have an Antiproliferative Effect on
Colitis-Inducing CD4+CD62Lhigh Cells. Lymphocyte subsets,

such as CD4+CD62Lhigh and CD8+T cells, were isolated from
the spleen of Balb/c mice by MACS. DX5+NKT cells were
isolated using MACS followed by FACS sorting
(Figure 1(a)). First, we analyzed the proliferation of
CD4+CD62Lhigh cells in coculture experiments with
DX5+NKT and CD8+T cells (Figure 1(b)) using CFSE
labeling. CD4+CD62Lhigh cells began to proliferate 48h
after stimulation with anti-CD3, anti-CD28, and IL-2.
As shown in Figure 1(c), after 96 h coincubation with
DX5+NKT cells, proliferation of CD4+CD62Lhigh cells sig-
nificantly decreased compared to single cultures (prolifer-
ation index: 1.39± 0.07 vs. 1.76± 0.12; P = 0 0079). The
antiproliferative effect of CD8+T cells was less distinctive
and statistically not significant.

3.2. Decrease of IFN-γ Cytokine Secretion of CD4+CD62Lhigh

Cells in Coculture Experiments with DX5+NKT Cells. Next,
we wanted to assess whether this antiproliferative effect
was associated with differences in cytokine secretion. There-
fore, the production of Th1 such as IFN-γ, TNF-α, and IL-2
and the Th2 cytokine IL-13 in CD4+CD62Lhigh cells was
compared. Isolated CD4+CD62Lhigh cells were cultured for
4 and 10 h in the presence of anti-CD3 and anti-CD28 anti-
bodies in a single or coculture with DX5+NKT or CD8+T
cells, respectively. The cells were additionally incubated
with PMA, ionomycin, and GolgiPlug for intracellular
cytokine staining. As shown in Figure 2(a), after 10 h,
CD4+CD62Lhigh cells produced the same amount of IFN-γ
in a coculture with CD8+ cells as in a single culture
(5.4%± 0.95% vs. 5.6%± 0.76%), whereas cocultured with
DX5+NKT cells, IFN-γ production of CD4+CD62Lhigh cells
was decreased (5.6%± 0.76% vs. 1.3%± 0.26%; P = 0 02). In
contrast, looking at TNF-α, IL-2, and IL-13, no interference
of DX5+NKT cells in cytokine production of CD4+CD62Lhigh

cells could be detected. Furthermore, there was no significant
effect looking at cocultures with CD4+CD62Llow cells
(Figure 2(b)).

3.3. DX5+NKT Cells Activate Proapoptotic Caspase-3 in
Colitis-Associated CD4+CD62Lhigh Cells. Results thus far dis-
play differences in the cytokine profile between CD8+ cells
and DX5+NKT cells but cannot explain the antiproliferative
effect on CD4+CD62Lhigh cells. Therefore, we wanted to
assess whether the cytotoxic potential of DX5+NKT cells
is involved in this process. We measured the amount of
intracellular caspase-3 after 10 and 48 h coincubation of
CD4+CD62Lhigh cells with either CD8+ cells or DX5+NKT
cells. As shown in Figure 3, DX5+NKT cells significantly
increased the number of caspase-3-positive cells after 48 h
coculturing (38% vs. 28%; P = 0 0451) compared to the
CD4+CD62Lhigh single culture.

3.4. FasL on DX5+NKT Cells Is Mediating the Induction
of Proapoptotic Caspase-3 in Colitis-Associated
CD4+CD62Lhigh Cells. Next, we wanted to assess which
route DX5+NKT cells used to induce caspase-3. Therefore,
either CD8+ cells or DX5+NKT cells were cocultured with
CD4+CD62Lhigh cells and stained for FasL expression.
After 4 h, DX5+NKT cells in coculture expressed more
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Figure 1: Flow cytometry analysis of the spleen CD3+DX5+NKT, CD8+ T, CD4+CD62Lhigh, and CD4+CD62Llow cells of Balb/c mice after
separation by MACS and FACS sorting (a). Proliferation (b) and proliferation index (c) of CFSE-labeled CD4+CD62Lhigh cells after 48 h
and 96 h of monoculture or coculture with CD8+ T cells or CD3+ DX5+NKT. Results are given as mean + SEM. Experiments were
repeated at least three times (∗P < 0 05).
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FasL compared to CD8+ cells (9% vs. 2%; P = 0 0026).
And after 10 h incubation, even more DX5+ NKT cells
expressed FasL (16.6%± 3.2%), whereas CD8+ cells in cocul-
ture with CD4+CD62Lhigh cells still expressed less FasL
(6.3%± 2.4%; P = 0 0159) compared to DX5+NKT cells
(Figure 4).

Finally, we wanted to prove that the induction of FasL
expression is responsible for the activation of caspase-3 in
CD4+CD62Lhigh cells. DX5+NKT cells were preincubated
with a FasL blocking antibody for 1 h prior to coculturing
with CD4+CD62Lhigh cells for 48h. Additionally, cells were
incubated with an isotype antibody for control reasons.
As expected, coincubation with DX5+NKT cells increased
the frequency of caspase-3-positive cells in the normal cul-
ture (34.4%± 4.3%; P = 0 0451) as well as in the isotype
control culture (38%± 3.5%; P = 0 028) compared to a
CD4+CD62Lhigh single culture (24%± 1.5%). Interestingly,
blocking of FasL on DX5+NKT cells reduced the frequency

of caspase-3-positive CD4+CD62Lhigh cells in the coculture to
that amount observed in the single culture (23.4%± 1.2%;
P = 0 008) (Figure 5).

4. Discussion

In this study, we show that proliferation of colitis-inducing
CD4+CD62Lhigh T cells is prevented by DX5+NKT cells.
After activation, naïve CD4+ cells can differentiate into
Th1, Th2, or Th17 cells, initiating different immune reactions
depending on their cytokine profile [2]. A variety of mecha-
nisms are involved in regulation of CD4+ T cell function,
including inhibition of proinflammatory cytokines, promot-
ing increase of certain T cell populations and suppressing
proliferation of different ones [9] [36]. Certain cytokines
can suppress and induce differentiation, i.e., of Th17 cells
[37] [38] [39], but for some activation also, direct cell interac-
tion with B cells is required [40]. Toes and his group showed
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Figure 2: Intracellular flow cytometry detection of IFN-γ in CD4+CD62Lhigh (a) and CD4+CD62Llow cells (b) after 4 h and 10 h of
monoculture or coculture with CD8+ T cells or CD3+DX5+NKT. Results are given as mean + SEM. Experiments were repeated at least
three times (∗P < 0 05).
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Figure 3: Intracellular flow cytometry analysis of caspase-3 in CD4+CD62Lhigh cells after 10 h and 48 h of monoculture or coculture with
CD8+ T or CD3+DX5+NKT cells. Results are given as mean + SEM. Experiments were repeated at least three times (∗P < 0 05).

5Journal of Immunology Research



that DX5+CD4+ T cells were able to direct CD4+ T cells
towards IL-10 production through IL-4 [41], and in addition,
these cells impair the function of CD4+ T cells through
specific inhibition of dendritic cells [42]. DX5+CD4+ T cells
are comparable to DX5+NKT cells because over 80% of iso-
lated DX5+NKT cells are CD4 positive [31]. Nevertheless,
reported studies could not show an inhibition of proliferation
of CD4+ T cells by DX5+CD4+ T cells [41]. This might be

explained by the fact that the used cells were OVA-specific
CD4+ T cells [41] and therefore different compared to naïve
CD4+CD62Lhigh T cells. Previously published data of our
group already revealed a decrease of colitis-inducing
CD4+CD62Lhigh T cells after coculturing with DX5+NKT
cells [7], and consistent in both settings, DX5+ T cells
decreased IFN-γ production of OVA-specific CD4+ T cells
as well as of CD4+CD62Lhigh T cells as shown in our
study [41, 42]. However, we used CD8+ T cells to exclude
an unspecific effect between the cultured subsets. This
worked very well as a control for the IFN-gamma production
assays but not so well, for example, in the proliferation assays.
Furthermore, stimulation with IL-2 might also impact the
responsiveness of CD4+CD62Lhigh cells, CD8+ T cells, and
NKT cells at different levels. Furthermore, as shown before,
DX5+NKT cells express in less 20% CD25 [31]. Therefore, a
relatively small contribution of Tregs on the observed effects
should be considered.

We found out that the inhibition of CD4+CD62Lhigh T
cells proliferation after coculturing with DX5+NKT cells is
associated with an increase of caspase-3 in CD4+CD62Lhigh

T cells. Mature caspase-3 results from the processing of
procaspase-3 and induces cell death through multiple cel-
lular molecules. Caspase-3 is involved in both major apo-
ptosis pathways: the intrinsic, which is mediated through
the B cell lymphoma 2 (BCL-2) family, and the extrinsic
pathway, which is induced through the interaction of FasL
and Fas [14].

In our study, expression of FasL was significantly
increased on DX5+NKT cells after 10 h especially in coculture
with CD4+CD62Lhigh T cells. Furthermore, blockage of FasL
resulted in a decrease of caspase-3 in CD4+CD62Lhigh T cells.
These results are in agreement with a previous report from
our group showing that DX5+NKT cells reduce colitis cells
through PD-L1 in vitro. However, PD1, the counterpart of
PD-L1, was expressed on both CD62Lhigh and CD62Llow
cells, suggesting that PD-L1 killing activity is likely mediated
via a different receptor [7]. FasL is known as a receptor on
specific cytotoxic lymphocytes [43, 44], but until now, it
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has not been described on DX5+NKT cells. FasL’s counter-
part on the effector cell, Fas, is known to transmit signals
that lead to cell death via apoptosis [45]. Our findings sug-
gest that the decrease in the number of colitis-inducing
CD4+CD62Lhigh T cells as well as their proliferation capacity
in the presence of DX5+NKT cells is principally executed
through FasL-Fas interaction. Loss of function of the FasL-
Fas pathway can cause autoimmune diseases [46–49], and it
is already known that FasL-Fas is required for elimination
of T cells [50].

Taken these data together with our findings supposes that
the interaction with DX5+NKT cells via FasL-Fas represents
one mechanism in the regulation of the development of
CD4+ T cells. Further studies should clear the importance
of this effect in the origin of autoimmunity and the additional
cofactors which are required to perform the function.
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